

TÜBİTAK MARMARA RESEARCH CENTER

MATERIALS INSTITUTE

Employee Profile

Researchers	86	74%
Ph.D.	43	
Master's Degree	37	
Undergraduate	6	
Research Technician	29	24 %
Support Staff	3	2 %

121

TOTAL

Priority Research Areas

JÜBİTAK

Critical Metallic Materials Group

- High Temperature Materials
- Advanced Steels and Armour Steel Applications
- Aluminium, Titanium and Magnessium Alloy and Process Technologies
- Steam and Gas Turbine Materials
- Hydroelectric Power Plant Materials
- Superalloy and Invesment Casting Technologies
- Metallography and Failure Analysis

CAST SUPERALLOY

Nickel based superalloys: Inconel 738LC Inconel 617 Nimonic 75

Cobalt based superalloys: Stellite 6B

Critical Metallic Materials - Projects

Nickel Based Single Crystal Superalloy Turbine Blade Project

Gas Turbine Blade Development Project

Obruk-Keban Dams Francis Turbine Rehabilitation

Rehabilitation and analysis of the corrosion and cavitation problems present at Obruk and Keban Hydroelectric Power Plants

Products

Steam and Gas Turbine Blades

Titanium Casting

Ultra High Strength Steel

TWIP Steels Dual Phase Steels Martensitic Steels

Structural Materials Group

- > Wear-resistant & high temperature composite materials
- Ballistic composite materials: modelling, designing, development and manufacturing
- High engineering ceramics
- Nano-structural materials process and technologies
- Metalic and ceramic based foam materials
- Advanced powder metallurgy technologies

Composite Test Laboratory

Laboratory Scale Autoclave

Fiber Reinforced Polymer Composites

Optical Microscopes

Composite Test Laboratory

Fibre Reinforced Polymer composites are produced and tested.

Autoclave has computer aided full automatic curing system.

To observe effects of extreme climatic conditions (hot-cold), UV light and

rain to the composites, climatic and UV cabins are used.

Surface characteristics of composites are investigated by Micro scratch tester and optical microscopes.

UV Cabin

Climatic Cabin

Microscratch Tester

Products

Antifouling paint

Carbon-SiC Materials

Train brake lining

Photonic Technologies Group

Photovoltaic Technologies

- Silicon Photovoltaics
- Organic Photovoltaics

LED / OLED Technology

- Display Systems
- ➤ Lighting

Thin Film Electronics Technology

- Thin Film Transistors
- Organic Electronics

Products

Texturized transparent conductive oxide coated glass substrates for thin film photovoltaics

Mono crystalline silicon heterojunction solar cells

Crystalline silicon solar cell modules

OLED lighting panel

Passive Matrix OLED display

Biosensor, Acoustic, Laser, Nanomaterials and Coatings Group

Biosensor, Biomaterials,Bioelectronic Materials

- ➢ Biosensor
- > Biomaterial
- ➢ Bioelectronic
- ➢ Optic Sensor

Sol-Gel Functional Coating Technologies

- Corrosion protective coatings
- High scratch/wear resistant coatings
- > Antibacterial coatings
- > Hydrophilic/hydrophobic coatings
- Fire resistant/flame retardant coatings
- Protection of cultural heritage
- Photocatalytic and anti-reflective coatings
- > Wrinkle-free, and UV protective coatings in textiles

> Laser Technologies

- Confocal Raman and Photoilluminance Microscope
- Laser Crystal Growth Studies
- Lidar Technology Studies
- Laser Based Spectroscopy Studies

Acoustic Technologies

- Sonar Systems
- Transducer Technologies
- Vector Sensor Technologies
- Referance Hydrophone Calibration
- Acoustic Measurements
- Hydrostatic Pressure Test
- Temperature Controlled Impedance Test

Nanotechnologic and Functional Materials

Functional materials for sustainable energy efficiency

- Nanotechnological Processes , and nanostructured functional materials
- Photocatalytic material technologies
- Silicate technologies, and oxide based materials
- Functional glass and glass ceramics
- > Cultural heritage glassses and ancient ceramics
- Functional product development for Industrial Symbiosis

FP7 Preparation of ITO Free Transparent Conductive Electrode via LBL Deposition of CNTs and Its Application for Solar Cells

_TÜBİTAK__

Materials Institute (MI)-Testing

TESTING, ANALYSIS & CHARACTERISATION LABORATORIES - EN ISO / IEC17025

•TESTING ANALYSIS & CHARACTERISATION SERVICES FOR INDUSTRY ELUCIDATION OF MATERIALS STRUCTURE

•QUALITATIVE PHASE ANALYSIS

•QUANTITATIVE ELEMENTAL ANALYSIS IN ORGANIC & INORGANIC MATERIALS

•FAILURE ANALYSIS; MACROSCOPIC INVESTIGATIONS

•CORROSION TESTS

•PARTICLE SIZE DISTRIBUTION ANALYSIS

•MECHANICAL TESTS

•MICROCHEMICAL & MICROSTRUCTURAL CHARACTERISATIONS, COATING MORPHOLOGY, INTERFACE INTERPRETATIONS, SPECIFIED IMAGE PROCESSING ANALYSIS (SEM-TEM)

40 50 60 Position [*2Theta] (Copper (Cu))

PANALYTICAL X'PERT PRO MPD X-RAY DIFFRACTOMETER

17

X 0.00 Y 0.00

Electron Microscopy Laboratories

- > JEOL 2100 LaB6 HRTEM, Oxford EDS
- > JEOL 100C TEM
- Sample Preperation for HRTEM: PIPS, dimple grinding, electropolishing
- FEG-SEM: JEOL-6335F, Oxford EDS-EBSD
- JEOL JSM 6510-LV SEM, Oxford EDS

Metallography and Failure Analysis Laboratory

High Temperature Testing Laboratory

- Universal Mechanical Testing 600kN, 1200°C
- Fatigue Test Device, 100kN, 1100°C
- Creep Test Machines, 1200°C
- DSC-DTA-TGA-1600°C

NDT Laboratory

320 kV X-ray and CT (Computed Tomography) system

Investigation on the Potential of Mg as an Implant

Figure. a) Screw implantation via surgery in sheep hip bone,
b) radiographic view of implanted screws, (from left to right: magnesium, titanium, hydroxyapatite coated titanium and bioabsorbable polymer) and c) picture of the screw used in the experiments.

R.A. Kaya, H. Cavusoglu, C. Tanik, A.A. Kaya, O. Duygulu, Z. Mutlu, E. Zengin, Y. Aydin, J. Neurosurg. Spine 6 (2007) 141–149. Useful Corrosion?- Potential of Magnesium Alloys as Implants, A. Arslan Kaya, R. Alper Kaya, Frank Witte and Ozgur Duygulu, Corrosion Science and Technology, (2008) Vol 7, No:3, pp.162-167

Synchrotron-micro-computed tomography

Synchrotron-radiation based micro-computed tomography views of an explanted magnesium screw after 6 months (thread diameter of screw 3.5 mm). Note the prominent corrosion layer in the head (white arrows in a and b) and on the thread tips (white arrows in (c)), and the massive ingrowth of woven bone into the pitches of the thread (black arrows in a and c).

Mg Twin Roll Casting-Warm Rolling

1 mm thick Mg AZ31 sheet

•1500 mm wide magnesium alloy AZ31, AZ61, AZ91, AM50 and AM60 sheets of 4-8 mm thickness were produced by twin-roll strip casting first time by TUBITAK MRC Materials Institute in Turkey.

•These are the first industrial scale and widest magnesium alloy sheets that have been produced by this method in the world by year 2007. 24

XRD Texture Studies

(0002) pole figures of **a**) as-cast 6.5 mm, **b**) rolled 1.0 mm AZ31 alloy and **c**) commercially available 1.0 mm AZ31 alloy sheets.

Asymmetric Rolling (ASR)

As Homogenized

After Warm Rolling

After ASR

Asymmetric Rolling (ASR)

Figure (0002) and (1010) pole figures of the (a) commercially available AZ31 1mm sheet, (b) commercially available AZ31 2mm sheet, (c) symmetrically rolled AZ31 2mm sheet and (d) asymmetrically rolled AZ31 2mm sheet.

Neutron Diffraction

Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B
Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy, AZ31B, sheet

Spectrometer for Materials Research at Temperature and Stress (SMARTS) at the Manuel Lujan Jr. Neutron Scattering Center (LANSCE), Los Alamos National Laboratory

Thank you